Facial Expression Recognition Using Spatiotemporal Boosted Discriminatory Classifiers

نویسندگان

  • Stephen Moore
  • Eng-Jon Ong
  • Richard Bowden
چکیده

This paper introduces a novel approach to facial expression recognition in video sequences. Low cost contour features are introduced to effectively describe the salient features of the face. Temporalboost is used to build classifiers which allow temporal information to be utilized for more robust recognition. Weak classifiers are formed by assembling edge fragments with chamfer scores. Detection is efficient as weak classifiers are evaluated using an efficient look up to a chamfer image. An ensemble framework is presented with all-pairs binary classifiers. An error correcting support vector machine (SVM) is utilized for final classification. The results of this research is a 6 class classifier (joy, surprise, fear, sadness, anger and disgust ) with recognition results of up to 95%. Extensive experiments on the Cohn-kanade database illustrate that this approach is effective for facial exression analysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Facial Expression Recognition Using Boosted Discriminatory Classifiers

Over the last two decades automatic facial expression recognition has become an active research area. Facial expressions are an important channel of non-verbal communication, and can provide cues to emotions and intentions. This paper introduces a novel method for facial expression recognition, by assembling contour fragments as discriminatory classifiers and boosting them to form a strong accu...

متن کامل

Facial Expression Recognition Based on Anatomical Structure of Human Face

Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...

متن کامل

Dynamic Facial Expression Recognition Using Boosted Component-Based Spatiotemporal Features and Multi-classifier Fusion

Feature extraction and representation are critical in facial expression recognition. The facial features can be extracted from either static images or dynamic image sequences. However, static images may not provide as much discriminative information as dynamic image sequences. On the other hand, from the feature extraction point of view, geometric features are often sensitive to the shape and r...

متن کامل

Boosted multi-resolution spatiotemporal descriptors for facial expression recognition

Recently, a spatiotemporal local binary pattern operator from three orthogonal planes (LBP-TOP) was proposed for describing and recognizing dynamic textures and applied to facial expression recognition. In this paper, we extend the LBP-TOP features to multi-resolution spatiotemporal space and use them for describing facial expressions. AdaBoost is utilized to learn the principal appearance and ...

متن کامل

Facial expression recognition based on Local Binary Patterns: A comprehensive study

Automatic facial expression analysis is an interesting and challenging problem, and impacts important applications in many areas such as human–computer interaction and data-driven animation. Deriving an effective facial representation from original face images is a vital step for successful facial expression recognition. In this paper, we empirically evaluate facial representation based on stat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010